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Objectives of this
workshop

O To be able to understand the fundamental
principles of linear models.

d To evaluate the assumptions of linear
models and know what to do if the
assumptions are violated.

O To be able to understand the difference
between linear models and linear mixed
models.

O To beableto apcs)l?/ linear models and
linear mixed models in R.



Linear Models

d Linear Models are used to :

 Predict the value of a dependent variable based on the value of at

least one independent variable EIT6 A STRAGHT LINE TO

« Explain the impact of changes in an independent variable on the  TH% MESSY SCATTERPLOT.
dependent variable Z 15 CALLED THE
INPEPENPENT OR

PREDICTOR VARIABLE, AND

0 Dependent variable/ response variable/ 1 THE DEPENDENT OR

outcome variable (Y) : SSPONSE VARUBLE. THe

REGRESSION OR PREDICTION
LINE HAS THE FORM

y = avbz

the variable we wish to predict or explain

0 Independent variables/ regressor variables/
predictor variables/ explanatory variable (X):

the variable used to predict or explain the dependent
variable



Simple Linear Regression Model

O One of the most well-known examples of a linear model is the simple linear regression

Only one independent variable, X

O Relationship between X and Y is described by a linear function
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Linear Linear Non-Linear Non-Linear

O Changes in Y are assumed to be related to changes in X



Population & Sample Regression Models

Population

Random Sample
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Height; = By + 1 Age; + &; Height; = By + B1Age; + e;

see previous MIG workshop 'Expt design'



Simple Linear Regression Model

: Random
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Simple Linear Regression Model

Y Y. =B, +B,X +¢€

Observed Value
of Y for X,

Predicted Value

Random Error fo.
of Y for X,

this X, value

Intercept = B3,




Simple Linear Regression Model

d How would you draw a line through the points? How do you determine which line
fits best'?

90 -

30 —

0 10000 30000 20000



Simple Linear Regression Model

O How would you draw a line through the points? How do you determine which line

1L l?
fits best" The smaller the sum of squared

differences the better the fit of the
90 - line to the data.

8 1 (8,8) @

e;=15 |

fitting a model to the
data such that the sum

of squared residuals is
minimized
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Assumptions of the linear model
Yi=PFo+P1Xit+¢&
d Linear relationship between response and predictor

A Errors follow a normal distribution with mean 0 and constant variance
(Homoscedasticity) >&;~N(0, 6?)

A Errors are independent from each other

We can verify assumptions using 4 diagnostic plot



Diagnostic plot 1 - Residuals vs Fitted

) What we hope to see: Random scatter, no pattern

Residuals vs Fitted
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: Shows whether residuals are independent and identically distributed



Diagnostic plot 1 - Residuals vs Fitted

 What should make you suspicious:

Nonlinear Heteroscedastic
Residuals vs Fitted Residuals vs Fitted
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1 What can you do:

Use a generalized linear model (GLM)
Transforming the response and/or predictor variables




Diagnostic plot 2 - Scale-Location

- What we hope to see: Random scatter, no pattern

Scale-Location
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. Violations of assumptions are sometimes easier to detect than in the first plot



Diagnostic plot 2 - Scale-Location

1 What should make you suspicious:

JIStandardized residuals|
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Strong pattern in the residuals



Diagnostic plot 3 - Normal Quantile-Quantile

J What we hope to see: Points clearly on the diagonal line

Q-Q Residuals

Standardized residuals

Theoretical Quantiles
Im(y ~ x)

. Compares the distribution (quantiles) of the residuals with a standard normal
distribution



Diagnostic plot 3 - Normal Quantile-Quantile

1 What should make you suspicious:

Q-Q Residuals

Standardized residuals

Theoretical Quantiles
Im(y ~ scale(x))

Residuals do not follow a normal distribution



Diagnostic plot 4 - Residuals vs. Leverage

] What we hope to see: No leverage points with high influence

Standardized residuals

. The model should not depend strongly on single observations

Residuals vs Leverage
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Diagnostic plot 4 - Residuals vs. Leverage

1 What should make you suspicious:

High leverage and high influence
Residuals vs Leverage
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Diagnostic checking in Practice

o For example, if you have fitted 1000 Linear models for each gene expression, do
you need to check 4000 plots?

Technically YES, but practically NO

o What to do?
o Check most important assumptions (i.e. normality)
o Instead of looking at 1000 qq plots
use a statistical test to check normality (e.g. Shapiro-Wilk test)



Interpreting 8, and j;

EI E\o (Intercept): estimated mean value of Y when the value of X is zero

4 B\l(Slope): estimated change in the mean value of Y as a result of a one-unit increase in X



Hypothesis testing for 8, and 4

Call:
Im(formula = Y ~ X)

Coefficients:

Estimate Std. Error t value Pr(zltl)
(Intercept) 2.107e+03 1.928e+02 10.93 1.28e-14 ***
X 6.085e-01 5.969e-02 10.19 1.35e-13 ***

Signif. codes: @ “***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 .’ 0.1 ©* ’ 1

l Iit):l?() — () l’ﬂ;. Ilil: l;() == ()

If o value for the intercept is <
0.05, we REJECT H,

DHl:ﬁ1=O VS. Ha:ﬁ]_:/:O

If o value for the X variable is <
0.05, we REJECT H,

see previous MIG workshop 'Expt design'



Linear Mixed Model

A Linear mixed models are an extension of simple linear models to allow both fixed
and random effects

Fixed effect : Any effects or variables that we are specifically interested in
studying

Random effects: Any effects or variables that we are not specifically

Interested in, but we need to account for in our model to avoid bias.
(Blocking variables)

see previous MIG workshop 'Expt design'



Linear Mixed Model

A Different structures for random effects in the model

0 random effect at the 0 random effect at the 0 random effect at the
intercept slope intercept and slope

A The Akaike Information Criterion corrected (AICc) can be used for model selection.



Other Types of Models

O Multiple linear regression :-
Only difference to simple linear regression: several independent variables are

included in the model
Yi=PBo+P1X1i+ B2 X+ + By Xppi + &

Q Generalized models :-
Can used when the normality assumption is violated

J ANOVA -
When you want to compare the means of three or more groups

Hy: Hgroupt = Hgroup2 = Hgroup3



Summary

Statistical Model

When to Use

Simple Linear Regression

Multiple Linear Regression

ANOVA (Analysis of Variance)

Linear Mixed Models

Generalized Linear Models

Generalized Linear Mixed Models

one continuous dependent variable and one independent variable

one continuous dependent variable and two or more independent
variables

Compare the means of three or more groups
Continuous dependent variable, and categorical independent variable

both fixed and random effects. It is used when data is collected in
groups or clusters.

dependent variable that does not have a normal distribution

both fixed and random effects, and the dependent variable does not
have a normal distribution




Number of Dependent

Summary variables (DV)
1 T 2+
e \
Assume normality for DV?e Multivariate
Pz analysis
Yes NoO
' .,
Number of Independent Generalized models
variables
ST
] 2+
,/ Are all categorical?
Is numerice —
— N\ No
. — No Yes /Yes N
2+ groupse
i P \ . Factorial Multiple linear
. No N Ves Simple linear ANOVA regression
2 regression
Independent groupse .
B No Yes ANOVA
~

Paired T-test

T-test




Summary

Thursday

5 June 2025
9:30am - 12:30pm

MIG Workshop: Managing
batch effects in biological
studies

Lead instructors: Eva Wang Batch
effects refer to sources of

PC2

I

. Nc

Treatments

PC1 &

Batch effect

Independent groug o1

correction Batches

NO

A/

‘ X2

ve: EVENT

Paired T-test

|_T—’res’r |

Number of Dependent

variables (DV)

10

ST
Thursday N
10 July 2025 Multivariate
9:30am - 12:30pm analysis
MIG Workshop: Multivariate
analysis for omics data models
integration (bulk)
Lead instructors: Prof Kim-Anh Lé >
Cao (MIG) Technological -als
N
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