
Linear Models
SARITHA KODIKARA

https://www.menti.com/al94qs1px1j6



Objectives of this 
workshop 

❑  To be able to understand the fundamental 
principles of linear models.

❑ To evaluate the assumptions of linear 
models and know what to do if the 
assumptions are violated.

❑  To be able to understand the difference 
between linear models and linear mixed 
models.

❑  To be able to apply linear models and 
linear mixed models in R.



Linear Models

❑ Linear Models are used to :
• Predict the value of a dependent variable based on the value of at 

least one independent variable 

• Explain the impact of changes in an independent variable on the 
dependent variable 

❑ Dependent variable/ response variable/ 
outcome variable (Y) : 
 the variable we wish to predict or explain 

❑ Independent variables/ regressor variables/ 
predictor variables/ explanatory variable (X): 
 the variable used to predict or explain the dependent 
variable 



Simple Linear Regression Model 

❑ One of the most well-known examples of a linear model is the simple linear regression

❑Only one independent variable, X

❑ Relationship between X and Y is described by a linear function 

❑ Changes in Y are assumed to be related to changes in X 
 

Linear Linear Non-Linear Non-Linear



Population & Sample Regression Models 

 

Population

Unknown Relationship

𝑯𝒆𝒊𝒈𝒉𝒕𝒊 = 𝜷𝟎 + 𝜷𝟏 𝑨𝒈𝒆𝒊 + 𝜺𝒊

Random Sample

Estimated Relationship

𝑯𝒆𝒊𝒈𝒉𝒕𝒊 = ෢𝜷𝟎 + ෢𝜷𝟏𝑨𝒈𝒆𝒊 + 𝒆𝒊

Infer

see previous MIG workshop 'Expt design'



Simple Linear Regression Model 

 



Simple Linear Regression Model 

 

෡𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖



Simple Linear Regression Model 

❑ How would you draw a line through the points? How do you determine which line 
‘fits best’? 

 



Simple Linear Regression Model 

❑ How would you draw a line through the points? How do you determine which line 
‘fits best’? 

 

The smaller the sum of squared 

differences the better the fit of the 

line to the data. 

fitting a model to the 
data such that the sum 
of squared residuals is 
minimized



Assumptions of the linear model

❑ Linear relationship between response and predictor

❑ Errors follow a normal distribution with mean 0 and constant variance 

(Homoscedasticity) →𝜺𝒊~𝑵 𝟎, 𝝈𝟐

❑ Errors are independent from each other

𝒀𝒊 = 𝜷𝟎 + 𝜷𝟏 𝑿𝒊 + 𝜺𝒊

We can verify assumptions using 4 diagnostic plot



Diagnostic plot 1 - Residuals vs Fitted

❑ What we hope to see: Random scatter, no pattern

❑ Why: Shows whether residuals are independent and identically distributed



Diagnostic plot 1 - Residuals vs Fitted

❑ What should make you suspicious:

❑ What can you do:
 Use a generalized linear model (GLM)

Transforming the response and/or predictor variables



❑ What we hope to see: Random scatter, no pattern

❑ Why:  Violations of assumptions are sometimes easier to detect than in the first plot

Diagnostic plot 2 - Scale-Location



❑ What should make you suspicious:

Diagnostic plot 2 - Scale-Location



❑ What we hope to see: Points clearly on the diagonal line

❑ Why:  Compares the distribution (quantiles) of the residuals with a standard normal 
distribution

Diagnostic plot 3 - Normal Quantile-Quantile



❑ What should make you suspicious:

Diagnostic plot 3 - Normal Quantile-Quantile



❑ What we hope to see: No leverage points with high influence

❑ Why:  The model should not depend strongly on single observations

Diagnostic plot 4 - Residuals vs. Leverage



❑ What should make you suspicious:

Diagnostic plot 4 - Residuals vs. Leverage



o  For example, if you have fitted 1000 Linear models for each gene expression, do 
you need to check 4000 plots?

 Technically YES, but practically NO

oWhat to do?
o Check most important assumptions (i.e. normality)

o Instead of looking at 1000 qq plots 

  use a statistical test to check normality (e.g. Shapiro-Wilk test)

Diagnostic checking in Practice



Interpreting ෢𝜷𝟎 and ෢𝜷𝟏 

❑෢ 𝜷𝟎 (Intercept): estimated mean value of Y when the value of X is zero 

❑ ෢𝜷𝟏(Slope): estimated change in the mean value of Y as a result of a one-unit increase in X 



Hypothesis testing for 𝜷𝟎 and 𝜷𝟏

❑ 𝑯𝟎: 𝜷𝟎 = 𝟎 𝑽𝒔.  𝑯𝒂 : 𝜷𝟎 ≠ 𝟎

❑ 𝑯𝟏: 𝜷𝟏 = 𝟎 𝑽𝒔.  𝑯𝒂 : 𝜷𝟏 ≠ 𝟎

If p value for the intercept is < 

0.05, we REJECT 𝐻0

If p value for the X variable is < 

0.05, we REJECT 𝐻0

see previous MIG workshop 'Expt design'



Linear Mixed Model 

❑ Linear mixed models are an extension of simple linear models to allow both fixed 
and random effects

 

see previous MIG workshop 'Expt design'

Fixed effect : Any effects or variables that we are specifically interested in 

    studying

Random effects: Any effects or variables that we are not specifically 
interested in, but we need to account for in our model to avoid bias. 
(Blocking variables)



Linear Mixed Model

❑ Different structures for random effects in the model

❑ random effect at the 

intercept

❑ random effect at the 

slope

❑ random effect at the 

intercept and slope

❑ The Akaike Information Criterion corrected (AICc) can be used for model selection. 



Other Types of Models

❑ Multiple linear regression :- 
Only difference to simple linear regression: several independent variables are 
included in the model

❑ Generalized models :-
Can used when the normality assumption is violated

❑ ANOVA :-
 When you want to compare the means of three or more groups

𝒀𝒊 = 𝜷𝟎 + 𝜷𝟏 𝑿𝟏𝒊 + 𝜷𝟐 𝑿𝟐𝒊 + ⋯ + 𝜷𝒑 𝑿𝒑𝒊 + 𝜺𝒊

𝑯𝟎: 𝝁𝒈𝒓𝒐𝒖𝒑𝟏 = 𝝁𝒈𝒓𝒐𝒖𝒑𝟐 = 𝝁𝒈𝒓𝒐𝒖𝒑𝟑



Summary 

Statistical Model When to Use

Simple Linear Regression one continuous dependent variable and one independent variable

Multiple Linear Regression
one continuous dependent variable and two or more independent 
variables

ANOVA (Analysis of Variance)
Compare the means of three or more groups
Continuous dependent variable, and categorical independent variable 

Linear Mixed Models
both fixed and random effects. It is used when data is collected in 
groups or clusters.

Generalized Linear Models dependent variable that does not have a normal distribution

Generalized Linear Mixed Models
both fixed and random effects, and the dependent variable does not 
have a normal distribution



Number of Dependent 

variables (DV) 

1 2+

Multivariate 

analysis
Assume normality for DV?

NoYes

Generalized modelsNumber of Independent 

variables

1 2+

Are all categorical?

Yes

Factorial 

ANOVA

No

Multiple linear 

regression

Is numeric?

No
Yes

Simple linear 

regression

2+ groups?

No
Yes

ANOVA

Independent groups?

No Yes

T-test
Paired T-test

Summary 
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